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Abstract. In project, analysis and optimization of thermal systems it is very important to be able to automatically obtain the 
thermodynamic properties of the working fluids at any time as the systems evolve between states. Unfortunately, property evaluation 
could be very onerous if done through thermodynamic chart lookups. However a quite accurate answer, at least for pure 
substances, can be obtained, determining the thermodynamic properties using a suitable generalized equation of state and some 
computational methods. According to that idea, Lee and Kesler suggested a modification of the Benedict-Webb-Rubin Equation of 
State, able to correlate the thermodynamic behavior of pure substances in compressed liquid, superheated vapor and liquid-vapor 
mixture states, from their critical temperature, critical pressure and Pitzer's acentric factor, as well as the coordinates of the actual 
state. There are some packages in the literature employing the same foundations, almost all closed source. The present code has 
been developed in Python as part of a much larger simulation program, although it may be used standalone. Python has been 
chosen as a multiplataform object-oriented open-source programming language, exhibiting very readable and powerful syntax. In 
order to validate both the methodology and the code, several results from the literature are compared, for water, hydrocarbons and 
refrigerants. 
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1. Introduction  
 

The procedure of obtaining thermodynamic properties by means of thermodynamic lookup tables has been very 
common among students and engineers. However, that error-prone procedure delays the attainment of important data 
for a thermodynamic analysis, so the solution would be getting such data automatically employing some software. 
There are some available packages able to provide thermodynamic properties, e.g. EES – Engineering Equations 
Solver, CATT2 – Computer Aided Thermodynamic Tables, FLUIDPROP and NIST-REFPROP, where, from those, 
only the last one is open source and the second from last is actually free. 

The present work describes an open source and free Python application development for thermodynamic properties 
determination. Through Pytermo the student, or engineer, will be able to understand the structure behind the 
construction of a thermodynamic chart, mainly because the chosen language to develop Pytermo was the Python 
programming language. 

To elucidate the significant productivity gain in program construction with Python, it is enough to state that a code 
in Python is two to ten times smaller than one in C/C++, moreover, Python possess a concise and easy reading syntax, 
allowing to the user a straightforward source code manipulation in the desired way. 
 
2. The Lee & Kesler Equation of State 
 

One way for utilization of an equation of state (EOS) for pure fluids is determining the EOS parameters fitting them 
to experimental data for each individual fluid. However, instead of setting particular parameters for each fluid, an EOS 
can be extended to broad classes of fluids by expressing the temperature and pressure in terms of the critical properties 
Tc and Pc and at least one additional parameter such as the acentric factor, ω. The result is a generalized form of EOS. 

By means of the Pitzer acentric factor, Pitzer et. al. (1955), it is possible to calculate the compressibility factor z of 
a pure fluid as a linear function of the acentric factor, ω, as follows, 
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where the superscripts (0) and (r) refer to a simple and a reference fluid respectively. 
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In 1975, Lee and Kesler (1975), seeking to improve the Pitzer results for fluids involved in hydrocarbon processing, 
developed an analytical implementation for z( , T'

rv r), using a modified Benedict-Webb-Rubin (1942) (BWR) EOS, 
with 12 empirical constants and using ω = 0 and ω =0.3978 as the simple and reference fluids acentric factors 
respectively. The Lee-Kesler EOS is: 
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where z is the compressibility factor and Tr, Pr and v’r are the reduced temperature, pressure and specific volume 
respectively, given by 
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and T, P, v and R are the temperature, pressure, specific volume and the ideal gas constant respectively. The remaining 
parameters are the foregoing mentioned empirical constants obtained by Lee & Kesler (1975), disposed at Tab. (1) for 
simple and reference fluids, in which octane has been chosen as reference fluid. 
 

Table 1 – Lee & Kelser EOS constants for simple and reference fluids. 
Constant Simple Fluid Reference Fluid 
   
b1 0,1181193 0,2026579 
b2 0,265728 0,331511 
b3 0,154790 0,027655 
b4 0,030323 0,203488 
c1 0,0236744 0,0313385 
c 2 0,0186984 0,0503618 
c 3 0,0 0,016901 
c 4 0,042724 0,041577 
d1 x 104  0,155488 0,48736 
d2 x 104 0,623689 0,0740336 
β 0,65392 1,226 
γ 0,03754 0,060167 

 
The thermodynamic properties enthalpy and entropy are expressed into a dimensionless form called the entropy 

and enthalpy departures, and can be expressed as a linear functions of the acentric factor, ω, as in Eq. (1). According to 
Lee and Kesler (1975), the enthalpy and entropy departures and the fugacity coefficient are expressed, using the Lee & 
Kesler EOS, Eq.(2), as, 
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where  
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and ln(f/P) is the fugacity coefficient to be described in the Saturation section. 
 
3. Methodology  
 
3.1. Obtaining vr’ from Tr and Pr 
 

Once Eq. (2) is implicit in Tr and vr’, it is initially necessary to use an efficient numerical root-finding method to 
obtain vr’ as a function of Tr and Pr and them determine the remaining properties. The Newton-Raphson method was 
chosen to obtain . First Eq. (2) is rewritten as, ( rrr PTv ,' )
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In order to obtain  from Eq. (7), two initial guesses are necessary for the Newton Raphson method 

convergence of , a large value for superheated vapor and a small value for compressed liquid. In this work, the 
selected initial guesses are 0,008 and 20 respectively. After solving the Eq. (7) using the constants at Tab. (1) for the 
simple and the reference fluid, is possible to calculate z(T

( rrr PTv ,' )
'
rv

r, Pr, ω) using the Eq. (1). 
 
3.2. Saturation 
 

From the Gibbs function, important property for the fluid phase change at equilibrium, the fugacity, f, is defined, 
which has a dimensionless form called fugacity coefficient, ( )Pf /ln . In two-phase region, the liquid and vapor 
fugacities are the same. Therefore, in a dimensionless form, 
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As mentioned before, the initial guesses for the Newton Raphson method convergence of   and 

 are 20 and 0,008 respectively. Rewriting the Eq. (9) in the same form of Eq. (7) give, 
( )( )vrrr PTv ,'
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This equality permits to numerically calculate ( )rr PT  or ( )rr TP  in the two-phase region of a pure substance. 

Again, a numerical root finding method is required to obtain ( )rr PT  or ( )rr TP and the Newton Raphson was chosen. 
However, here the initial guesses are pressure or temperature values, so, a good initial guess is obtained using the vapor 
pressure correlation proposed by Lee & Kesler (1975), as a function of the acentric factor ω, Eq. (11), 
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After numerically solving the Eq. (10) using the constants at Tab. (1) for the simple and the reference fluid, it is 

possible to fit a correlation for a generalized vapor pressure curve, as a function of the acentric factor ω. The correlation 
has been divided in two intervals for better results, one for 0.30<TTr<0.90 (Eq. 12a) and another for 0.91<TrT <0.99 (Eq. 
12b): 
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It should be stressed that the vapor pressure correlation in Eqs. (12a) and (12b) developed in this work and which 

has never been published before, exhibits a much better behavior along a greater range of inputs than Eq. (11), as will 
be demonstrated in the Results section.  

An illustrative procedures diagram is depicted in Fig.(1). 
 

Tr , Pr , w

Lee-Kesler EOS

Calculus of vr’ by Newton Raphson

 
Figure 1 –Diagram illustrating the internal working. 

 
4. Results 
 
4.1 The Pytermo package 
 

The Pytermo package was entirely developed in the Python programming language, from the source core until the 
graphical interface, which has been built using the wxPython library. Pytermo has a user-friendly graphical interface 
allowing for results either in the dimensional or the dimensionless form. The Pytermo obtained results are output in a 
grid fashion, which allows the user to easily determine either a single thermodynamic state or several thermodynamic 
states by just by keeping one property fixed and changing another thermodynamic property to obtain a sequential result. 

A graphical interface of Pytermo is depicted in Fig. (2). 
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Figure 2 – A dialog for data entrance of Pytermo for dimensional thermodynamic properties determination in a range 

format. 
 
The window “planilha - dimensional” is disclosed after pushing the “substância” button, located at the top left side, 

and it is used when it is desirable to obtain dimensional results in a sequential form. In that window, one property must 
have three input values, the initial, the final and a step value, represented in the dialog by “Valor inicial”, “ Valor final” 
and “Passo” respectively. The other property has a single input value. The result for this example is shown at Fig. (3). 

 

 
Figure 3 – A grid for output data of Pytermo for dimensional thermodynamic properties determination in a range 

format. 
 
If a single result is desired the dialog is represented by Fig. (4). 
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Figure 4 – A dialog for data entrance of Pytermo for dimensional thermodynamic properties determination in a single 

format. 
 

The grid for results is, 
 

 
Figure 5 – A grid for results of Pytermo for dimensional thermodynamic properties determination in a single format. 

 
If is desired to obtain dimensionless results, the dialog for data entrance will be: 
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Figure 6 – A dialog for data entrance of Pytermo for dimensionless thermodynamic properties determination in a single 

format. 
 

Again, the dialog “planilha - dimensional” is shown when the user clicks at the “substância” button, located at the 
top left side. 

 
4.3 Tests for some substances 

 
Comparisons for hydrocarbons and refrigerants were made between results using this work and NIST REFPROP 

6.01. The Tabs. (2) and (3) shows the average deviation, standard deviation and the maximum deviation for each 
analyzed fluid. 
 

Table 2 – Percentage deviations for enthalpy. 
ENTHALPY 

Substance Average deviation 
(%) 

Standard deviation 
(%) 

Maximum deviation 
(%) 

Ammonia 5.963 7.914 24.023 
butane 1.308 1.887 13.306 

propane 1.642 2.907 18.945 
ethane 1.113 2.074 11.638 
R12 2.810 3.270 11.308 

R134a 1.006 1.770 18.308 
 

Table 3 – Percentage deviations for entropy. 
ENTROPY 

Substance Average Relative 
Deviation 

(%) 

Standard 
Relative Deviation 

(%) 

Maximum Deviation 
(%) 

Ammonia 5.929 7.828 22.642 
butane 1.612 1.257 12.598 

propane 1.316 2.199 12.691 
ethane 1.061 1.878 8.823 
R12 2.900 3.279 12.211 

R134a 0.993 1.772 15.308 
 

Finally, in order to show that the Eq. (12) produces more accurate values than Eq. (11), the average deviations, 
comparing with the standard steam pressure table, taken from Wylen, Sonntag and Borgnakke (1955), have been plotted 
in the Fig. (7).  
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Figure 7 – Comparison of the steam pressure curves average deviations between Lee & Kesler and the present work for 

water. 
 

5. Discussion of results. 
 
Due to Lee & Kesler EOS complexity, there are convergence problems for some values of Tr and Pr as for the 

regions near to the critical point (Tr = 1, Pr = 1) and at compressed liquid values, especially for very low reduced 
pressures. Caution is necessary when the temperature approaches the assumed reference state (sl = 0 and hl = 0 for T 
=233.15 K), because residual values there tend to zero and any absolute deviation results in a large relative deviation. 

Is necessary to observe that the maximum deviation values at Tabs. (2) and (3) occur in the compressed liquid 
region, since Lee & Kesler equation behaves much better in the vapor and gas phase. Additionally, since these 
algorithms have been developed in a modular fashion using Python with Object Orientation, a change in the EOS is 
quite feasible, allowing for much better results in the case of polar substances, for example. On fact, simulation of 
mixtures using suitable enhanced EOSs and pseudo-critical models is also being worked upon. 
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